
,

.

Rapid Application of Lightweight Formal Methods

for Consistency Analyses

Martin S. Feather
Jet Propulsion Laboratory, California Institute of Technology

Mail Stop 125-233
4800 Oak (hove Drive

Pasadena CA 91109, USA
Martin. S . Feather@Jpl .Nasa. Gov

Abstract

Lightweight formal methods promise to yield modest analysis results in an extremely
rapid manner. To fulfill this promise, they must be able to work with existing
information sources, be able to analyze for manifestly desirable properties, be highly
automated (especially if dealing with voluminous amounts of information), and be readily
customizable ancl flexible in the face of emerging needs and understanding. Two pilot
studies investigate the feasibility of lightweight formal mcthocis that employ a database as
the underlying reasoning engine to perform the analyses. The first study concerns aspects
of software module interfaces, the second test logs’ adherence to required and expected
conditions.

1. Introduction

Critical software systems often warrant high levels of assurance as to the correctness of
their design and iil~pleI~lcIltatioI1. lncrcasingly, formal methods are being applied in
conjunction with traditional testing as a means to achieve these high levels of assurance.
In such a context, formal methods are just another analysis technique, and the choice of
when and where to apply them shoLIld be justified in terms of their cost-effectiveness.
Criteria that enter into this determination ~nc]udc the case of application of the methods,
and the timeliness and valLIc of their results.

Jackson ancl Wing [Jackson & Wing 1996] in their contribution to a roundtablc
discussion use the term Iig}zt}i(’iglztforl)z({l methods to refer to formal methods intended
to be particularly amenable to rapid application, and thus have the capacity to yield results
in a cost-effective and timely fmhion. Traditionally, use of tool-based formal methods in

The research described in this paper was carried out by the Jet Propulsion Laboratory,
California]nstitutc of Technology, under a contract with the National Aeronautics and
Space administration. Funding was provided under NASA’s Code Q Software Program
Center lnitia(ivc UPN #323-08.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government or the Jet Propulsion Laboratory, California]nstitute of
Technolosw.

Feather Rapid Application of 1 lightweight Formal Methods . . ~~ 2

the arena of software validation ancl verification has appliecl theorem proving to confirm
properties of formal specifications. Thcomn proving can indeed be applied to conduct
deep and significant analyses, but often requires a large investment of effort to prepare for
its application. in contrast, lightweight formal methods occupy a different place in the
spectrum of analysis techniques. They have more modest analysis goals, and employ tools
that require less preparatory work to apply.

The goal of rapid application ensures that the analysis results become available early in
the development process. This has the obvious benefit that the developers become alerted
to discovered problems early rather than late in the development process, so saving them
the considerable effort of fixing errors downstream [Bochm 1981]. Thus, the analysis
results are both timely and potentially valuable. Furthermore, the need to achieve rapidity
of analysis has the side effect of constraining the analysis method to be one which is easy
and simple to apply (anything otherwise woLIld fail to be sufficiently rapid!). That is, by
their nature, rapidly applied analysis methocls are inherently inexpensive.

The approach we have followed employs a database as the underlying reasoning engine to
perform analyses. The rationale for this choice is clescribcd in Section 2, along with the
background to the two pilot studies LMed to investigate the feasibility of this approach.
The first pilot study is described in Section 3, along with the intermediate conclusions
drawn from that effort. The second pilot study emp]oyed the same tool in support of
analysis, and was applied to a different aspect of that same project; it is described in
section 4. An overa]l discussion conc]udes the paper in Section 5.

2. Approach

Meeting the goal of rapid application necessitates a judicious simultaneous choice of
analysis objective and analysis method. It must be relatively easy and speedy to:
(1) acquire the information to be analyzed in the form required for analysis,
(2) decide what to analyze this information for,
(3) actually perform the analysis itself, and
(4) interpret the results of the method.

Together, (1) and (2) imply a need to employ analysis techniques that work with available
sources of information and to :inalyzc for properties that arc readily seen to be required
and readily expressed to the analysis tool. (3) and (4) imply a need to apply highly
automated analysis methods that are both rapid and flexible.

The approach wc have followed employs a database as the underlying analysis engine.
The information to be analyzed is loaded as data into the database, and the properties to
bc analyzed for are cast as database queries. The database itself evaluates those queries,
and the query results provide the cletailcd analysis results.

The strengths ancl weaknesses of a database used as an analysis engine differ somewhat
from those of reasoning engines typically brought to bear for software analysis. A typical
database provides a flexible query language, query, user-dcfinab]e schema with which to
express relationships among clata, support for loading data into the database, and
powerful report generation capabilities. These characteristics support the four criteria

. Feather Rapid Application of I,igh[weight Formal Methods... 3

identified above. The user-definable schema and sLIppoIl for data entry facilitate working
with available sources of information in a large variety of formats. A flexible query
language permits the easy expression of a wide range of properties to be analyzed for, and
the underlying query optimization mechanism relieves the user from the burden of
(reexpressing the property (query) just so as to achieve efficiency of analysis. The ability
to refine and compose queries provides flexibility evolve the analysis. Result reporting
and categorization supports ease of expressing results (e.g., listing anomalies and their
details).

Of course, a database is not suited to every kind of analysis. The most important
constraining factor is the need to work with rxplicit information (so that it can be loaded
as data into the database). in contrast, other analysis techniques are commonly based upon
mechanisms that work with implicit forms of expression. For example, state-exploration
techniques may work with a program-like description, implying a state space; they
generate and explore this implicit state space themselves. The ability to analyze properties
of implicit forms of information is highly ctesirab]c – it may yiclcl results that are difficult
for humans to reliably ascertain by manual inspection. Theorem proving can be applied to
analyze properties of implicit descriptions of information that, if made explicit, would be
infinite in size. Yet working with implicit information often necessitates a good match of
both notation and scale between the form of the information to be analyzed, and the form
and scale of input that the analysis tool can accept and tractably reason with. Mismatches
in either form or scale can be bridged, but typically only with a considerable investment
of time and effort.

This paper reports on two closely linked pilot studies that rapidly apply lightweight
formal methods employing a database as reasoning engine. These pilot studies investigate
feasibility by application to real problems, but do not replace any of the inspection and
testing activities that the spacecraft developers must currently perform. The intent is that
a pilot study will indicate whether a technique has promise, and if so, indicate how it
should be put to practical LISC in future developments.

The area of the studies is the ongoing design and development of spacecraft software. The
particular spacecraft wc have studied is NASA’s New Millennium project’s Deep Space-
1, in particular, the Autonomy software intended to control that spacecraft. The spacecraft
project adopted a fret-paced rapid prototyping style of development, and employs
relatively complex on-board software. Rapidly applied analysis methods are thus highly
appropriate. Our focus was on two aspects of this project: analyzing for consistency and
completeness properties of interfaces between some of the software modules, and
analyzing transcripts generated during testing for adherence to some of the requirements.
Analyses such as these arc likely to be useful in a wide range of software systems, not just
spacecraft soft ware.

3. Pilot Study I - Analyzing Software Interfaces

The software system that controls the spacecraft is subdivided into several major
modules, which communicate via message passing. Separate teams of developers are
responsible for the design and development of each of these modules. A previous study of

Feather Rapid Application of I.ightweight Formal Methods . . 4

safety-critical, embedded systems [1.LItz 1993] idcnt ified interfaces as a major source of
software errors. This suggested that the interfaces between this spacecraft’s mo(iules
WOL1lC1 be an area ripe for analysis. 17urlhcrnlore, lightweight analysis was anticipated to
be applicable to reveal discrepancies between different modules at the interface level.

The four requirements for rapid analysis led to the following decisions:

(1) To rapidly acquire the i~f[)rtmtim to h atialyzd: In the early stages of development,
the interface of each module was clocumentcd cliagramatically to facilitate
coordination and understanding between the development teams. Thus the analysis
process was targeted to work with this same information source.

(2) To rapidly decide what to aialyze this ittforttwtiotl for: Manifestly desirable
properties of consistency and completeness were easy to postulate. Additional
information present in the diagrams, in the form of simple causality information, also
served as a source of further obvious analysis opportunities.

(3) To rapidly pcrjc)rt)l the mmly.vis it.selJ A database with a powerful and flexible query
mechanism was chosen to serve as the analysis tool. The expectation was that it
would be straightforward to design a database schema customized for holding the
information content implied by the diagrams, load the diagrams’ information into that
database, and express the analyses as database queries. Thereafter, the query
mechanism of the database itself woLIld perform the analyses rapidly and
automatically.

(4) To rapidly itltet-pret the results of the method: Discrepancies revealed by this analysis
woLdcl be readily traceable to the interface diagrams, and so be easy to interpret. The
excrcisc showed that some iterative refinement of the queries was needed to separate
those discrepancies attributable to obviously missing information from those
discrepancies that were more indicative of unintended omissions, etc. Again, the
flexibility and simplicity of a database analysis engine proved the key to the rapidity
of these refinements.

3.1 Available Information

in the early stages of development, the interface of each module was documented
diagtamatically to facilitate coordination and understanding between the development
teams.

Figure 1 shows an example of one of these diagrams. The software module is drawn as a
rectangular box, with arrows entering into and emanating out from this box to indicate the
t ypcs of messages that can be received by an(i sent from this nloclLdc. In more detail:

. Al 1 the possible input message t ypcs of the nlodLIlc arc shown as incoming arrows
on the left.

Feather Rapici Application of I.ightwcight Formal Methods...

Smart Executive

“Ml_ MODE_ UPDATES <updates>”

(MIR) 1

“NAV. PLAN. PREP. FINISHED

(NAV)

“PS. PLAN_ RESULT <filename>”

(Ps)

“ACS_ACM..TURN_ COMPLETE <id> <ti~

(ACS)

“MICAS_SNAPSHOT AVAILABLE <filenam~

(MICAS)

“ MR.. RECOVERY_PLAN ctask-neb”

(MIR) b

F1----RMODEs

l\
l\

i= j’l_ >

E==
“NAV. SNAPSHOT_ AVAILABLE <target> dilenan

‘fj
(NAV)

“EXEC. PLAN_ FAILED”

h’
“EXEC. TOKEN_ FINISHED <token>”

/),

“NAV. PLAN_ PREP”/
/ (NAV)

*
“PS. PLAN_ N EXT_HORIZON <goal-file> -mewp—

/ (Ps)

– *
“EXEC. NEW_ PLAN_ READY <filename>”

(NAV)

“ACS. ACM_ EXECUTE_ TURN <id> <attitu
/

/ (ACS) (MIR)

“ MICAS. TAKE. SNAPSHOT <image desb <ilel
/

/ (MICAS) (MIR)

!’iF<’Oken”
I I

“FSC_ POWER_ ON_ OFF_ REQUE:ST <dem <sk
/, I (PDU) (MIR)

“FSC_ 1553. RESEr
‘,1 (1553BC) (MIR)

“MICAS. RESET”
I (MICAS) (MIR)

“ACS. SRU_ RESE1’”
(ACS)(MIR)

Figure 1 - Diagram of a Software Module Interface

5

● All the possible output message types of the n]odLde are shown as outgoing mows
on the right.

Feather Rapid Application of Lightweight Formal Methods... 6

●

●

●

●

The name of the message type is shown in capital letters above each arrow, along
with the message parameters (if any) inside angled brackets “<... >“.

For each imot)zi)zg arrow, the names of the modules from which messages of that
type may origimte arc shown below the arrow.

For each m~goi)lg arrow, the names of the modules to which messages of that type
are sent are shown below the arrow.

Cause-effect relationships between message types are shown as dot(cd lines going
across the inside of the box:

● when a dotted line goes from an incoming message type to an outgoing message
type, it indicates that receipt of such an incoming message ma-y lead to the
software moclule producing such an outgoing message; wc will refer to such
clotted lines as denoting “eq)licit” cause-effect links.

● when a dotted line goes from an outgoing message type to an incoming message
type, it indicates that sending of sLIch an outgoing message may (via the actions
of other software modules) lead to the receipt of such an incoming message; we
will refer to such dotted lines as denoting “i})zplicit” cause-effect links.

3.2 Analysis Objectives

The objectives set for analysis were to look for instances of the following potential
problems within the set of software interface diagrams:

● “Dangling” outgoing message type - a message type on an outgoing arrow of
module M 1 listed as going to some module M2, but not listed on module M2’s
diagram as an incoming message type from module M 1.

● “Dangling” incoming message type - a message t ypc on an incoming arrow of
moclLdc M 1 listed as coming from some mochde M2, but not listed on modu]e M2’s
diagram as an outgoing message type to moclulc M 1.

● “Misnlatchcd” parameters - a message type whose list of parameters in one module
is not identical to its list of parameters in some other nlodLdc.

● “Miraculous” implicit cause-effect link - an implicit cause-effect link (i.e., a link
from an outgoing message type (T], say), to an incoming message type (T2, say),
such that there does not exist a chain of explicit cause-effect links and
correspondences between outgoing and incoming messages that connects T 1 to T2.
See Figure 2 for an example of an implicit caLIsc effect link for which the
corresponding chain exists; had any one of the elements of that chain been absent
(e.g., the explicit cause-effect link in M2), then the chain would have been broken,
and M 1‘s implicit link would have bccm deemed “miraculous”.

Feather Rapid Application of Lightweight hmal Methods... 7

● “Onlittcd” implicit cause-effect link - omission of an implicit cause-effect link (from
outgoing message t ypc T 1 to incoming message type T2) for which there does exist
a chain of explicit cause-effect links that connect Tl to T2.

Ml M2

T1

T2 . *..-” ----------
----- (M2)7

~ (M2) i 1’1 F T2.- . . -----
(Ml) ‘ (M 1)?

Key: MoclLIle

‘nc%Yy”g “ “ ‘ ‘ “ Cor’es”o’’d:c’

● . I,~,p]ici(callse-effect

‘-------------------+ Explicit cause-effect

Ml’s ittydicit c[imc-eflcct litk (Iefhwrds from mtgoitlg T] to it~cottlit~g T2)
cormspm~ds to the chaitt vi{{ A42 (Ml ‘,v o[ltgoit)g T] corRJ.vpo)Id.v to A42 ‘.7
itlconlitlg T], which is litkd by ml e,tplicit cau.vc-e~[ect link to 1142’s outgoitlg T2,
which correspotlds to Ml’s itlcottlitlg T2).

Figure 2 - an implicit cause-effect link and a
corresponding chain of explicit cause-effect links

3.3 Analysis Process

Selection of the analysis tool was driven by the following considerations:

. pressing need for rapidity of analysis results,

. potential need to scale to voluminous quantity of data, and

● relatively straightforward nature of analysis calculations.

Together, these motivated the selection of a databa.w with a powerful ancl flexible query
mechanism to serve as the analysis tool. A powerful and flexible database query
mechanism would enable rapid analysis. The database itself would easily handle
voluminous amounts of data, while automatic query optimization would ensure efficient
analysis. Finally, since the analysis calculations were expected to be relatively
straightforward, it was anticipated that the simple reasoning capabilities of a database
would suffice. Had the analysis required, say, reasoning about symbolic expressions with
arithmetic inequalities, then it is likely that a more sophisticated tool such as a theorem
prover would have been needed.

Feather Rapid Application of I lightweight Formal Methods . . . 8

Our choice was to LISC AP5 [Cohen 1989], a research-quality advanced database tool
developed at the l)niversity of Southern California. AP5 provides an entity-relationship-
like data-model convenient for representation, facilitating the design of the data schema
to hold the information. AP5 exists as an extension of Common Lisp, itself a powerful
and convenient programming language environment, suited to the ad-hoc programming
needed for the process of data-entry. AP5 provides a powerful definition capability and
query interface, facilitating the expression of an;ilyscs as database queries, and has a
sophisticated underlying query optimization mechanism.

Having selected the AP5 database system as the analysis tool, the analyses were achieved
by: (1) preparing a database representation to hold the information content of the software
interface diagrams, (2) loading the information into the database, (3) issuing the
appropriate database queries corresponding to each of the problem category analyses, and
(4) interpreting the results.

These steps are now discussed in detail.

3.3.1 Representation

The first analysis step was the design of a database representation to hold the information
content of the software interface diagrams. The AP5 database provides entities (typed
objects) and relationships among entities as builcling blocks, so a straightforward
representation was developed in terms of these, as follows:

13ach message arrow was represented as an entity of type arrow, with attributes (binary
relations) to hold the arrow’s message name, the arrow’s destinations or sources, and its
parameters. Subtypes of this arrow type distinguished incoming and outgoing arrows.
Cause-effect links were represented similarly.

Definitions of information derived from the above were then added. For example, the
concept of correspondence between an outgoing arrow and an incoming arrow was
defined to hold whenever two such arrows share the same message name, the outgoing
arrow points to (i.e., has as one of its destinations) the incoming arrow’s module, and the
incoming arrow points from (i.e., has as one of its sources) the outgoing arrow’s nlodule.
The AP5 definition of this “correspondence” concept is shown figure 3.

(defrelation correspondence ; define the concept correspondence; it rekdes
((oa ia) s.t. ; a pair of objects, oa arid ia, such that:
(and (out-arrow oa) ; oa is an outgoing message arrow,

(in-arrow ia) ; ia is an incoming message arrow,
(E (name) (and (arrow-name oa name) (arrow-name ia name)))

; oa’s name and is’s name are the same,
(E (mod) (and (arrow-module ia mod) (arrow-to oa mod)))

; oa points to ia’s modu/e, and
(E (mod) (and (arrow-module oa mod) (arrow-from ia mod)))

; ia poink from oa’s modu/e.

)))

Fimre 3- cxamnlc AP5 definition

Feather Rapid Application of Lightweight Formal Methods . . . 9

The innermost clauses arc relational queries, e.g., (arrow-name Oa name) is true if and only
if the arrow-name relation relates oa to name. Traditional logical connccti~’es (e.g., and),
and quantification (e.g., (E (v) q) - meaning the existential predicate whose bound variable
is v and whose inner predicate is q) can be employed.

The syntax combines a lisp heritage ancl a relational flavor, which to those unfamiliar
with either is somewhat obscure at first rcaciing. The important point is to observe that the
overall form of the definition mirrors closely the English description above, that is, there
is a straightforward rendering of the obvious definition into the corresponding formal
expression.

3.3.2 I)ata entry

The diagrams were available electronically as PostScript files. Some manipulation was
required to extract the information contents of those files and massage it into a form
which could then be input into the AP5 clatabasc. This was done semi-automatically,
mostly by means of Fhnacs macros to extract the textual contents (message names,
parameters, and input/output module names); the information imparted by the causc-
effect arrows had to be manually entered into the database (since it was not readily
apparent how to recognize from the PostScript file which message types were being
connected by a cause-effect arrow). Overall, this process took on the order of a couple of
hours to process the equivalent of 6 times the information content of Figure 1.

3.3.3 Analysis

The analysis objectives of section 3.2 were expressed as database queries to evaluate
against the data entered in the previous step. The definitions follow:

● “Dangling” outgoing message types:
(Iistof (oa) s.t. (and (out-arrow oa) (not (E (is) (correspondence oa is)))))
retrieves the list of objects that are outgoing arrows and are not related by
correspondence to anything.

● “Dangling” incoming message types (analogous to the previous bullet):
(Iistof (is) s.t. (and (in-arrow ia) (not (E (oa) (correspondence oa is)))))

● “Misnlatchcd” parameters:
(Iistof (oa ia) s.t. (and (correspondence oa ia)

(not (E (plist) (and (parameters oa plist) (parameters ia plist))))))
retrieves the list of pairs of objects that arc related by correspondence (i.e., an
outgoing nlessage and its incon]ing counterpart), but whose parameter lists arc Hot
Cqllal.

● “Miraclllotls” inlplici[cause-effect links:
(Iistof (oa ia) s.t, (and (implicit-cause-effect oa ia)

(not (cause-effect-chain oa is))))
retrieves the list of pairs of objects that arc related by implicit-cause-effect but ml
related by cause-effect-chain. The definitions of those relations are as follows:

(defrelation implicit-cause-effect
((oa ia) s.t. (and (out-arrow oa) (in-arrow ia) (cause-effect oa is))))

Feather Rapid Application of I,ightwcight Formal Methods . . . 10

i.e., a cause-effect arrow froman outgoin gmcssagcarrow to an incomingonc.
explicit-cause-effect is dcfinecl analogously.

(defrelation cause-effect-chain (tclosure correspondence-or-explicit-cause-effect))
i.e., the ttnnsi[ive C1O.WC of correspondence-or-explicit-cause-effect, which is in turn
defined by:
(defrelation correspondence-or-explicit-cause-effect
((al a2) s.t. (or (correspondence al a2) (explicit-cause-effect al a2))))

● “Onlitted” implicit cause-effect link:
(listof (oa ia) sit, (and (not (implicit-cause-effect oa is))

(cause-effect-chain oa is)))
retrieves the list of pairs of objects that arc mt related by implicit-cause-effect but are
related by cause-effect-chain.

Again, observe that the formal expression of these queries is a straightforward rendering
of the informally expressed concepts.

3.4 Analysis Results

The performed analyses resulted in list of anomalies for each of the analysis objectives.
Anomalies were readily categoriz,able being either:

● inconsistency - attributable to contradictory information present within the set of
software interface diagrams, or

● incompleteness - attributable to information missing from set of software interface
diagrams.

It was iJ1lJlledlate]y clear that a good number of the incompleteness anomalies could be
attributed to the fact that cliagrams had not been clrawn of all of the system’s software
modules. In response to this, a simple refinement of the database queries was made to
draw the distinction between the following two sub-cases of incompleteness:

● internal incompleteness - attributable to missing information that should have been
present within the existing set of software interface cliagrams, and

● external incompleteness - attributable to the lack of a software interface diagram;
these anomalies point to expectations OJ1 the information that those diagrams, if
provided, would contain.

Finally, one further sub-case of reportecl anomalies was distinguished - “missing” implicit
cause-effect links that could bc deduced from other links all present in the same diagram.
For example, for the module shown in Figure 1, analysis reporlecl that an implicit cause-
effect link from the outgoing NAV_PLAN_PREP arrow to the incoming PS_PLAN_RESULT
arrow was missing. Upon inspection, it was obvious that the diagrams were not bothering
to show such links when they could be deduced from the presence of the other cause-
effect links shown within that same diagram (NAV_PLAN_PREp to
NAV_PLAN_PREP_FINISHED to PS_PLAN_NEXT_HORIZON to PS_PLAN_RESULT). Again,
a simple refinement of the database query was sufficient to automatically distinguish such
cases.

Feather Rapid Application of lightweight Formal Methods... 11

What remained was a list of approximately 20 genuine anomalies, distributed over the
various categories of anomalies identified above. Note that these anomalies were derivccl
from the information in the software nloclLIlc interface diagrams, which were used as a
form of documentation aid for un(icrstanding. Hcncc it should not be construed that these
anomalies carried through into the actual design.

3.5 Analysis Discussion

Database as a formal analysis tool: The effort succeeded in straightforward] y
representing simple design information in a database, and conducting consistency and
completeness checks by issuing queries against that database.

Flexibility and customizability: Flexibility to construct new checks, and to refine
previous checks, is crucial. This study employed both generic checks (e.g.,
correspondences between outgoing and incoming messages) and customized checks (e.g.,
concerning cause-effect links). Thus there was no a-priori limitation on the set of checks
that could be conducted. ~;urthcrnlorc, refinement of checks was also found to be useful.
In this study, the originally clcsigned consistency checks were refined to take into account
whether information was cxpcctecl to be absent (e.g., reference to information in a
diagram not provided; implicit cause-effect links justified by other links present within
the same diagram). Such iteration when performing analysis is common whenever the
analysis is conducted by someone other than the authors of the design information.
Assumptions on the usc of a notation may not have been documented, or the analyst may
not have come across sLIch documentation. Analysis that does not take these assumptions
into account generates false alarms (typical] y, a large number of them!) on the first
attempt at analysis. The analyst must recognize the likely undcdying cause, confirm it
with the clcvclopcrs, ancl I-cfine the aruilysis accordingly. I~lcxibility is the key to being
able to do this.

Working with available information: Adapting the analysis activities to the existing
available information sources was relatively straightforwar(i. While not completely
automated, actual data capture was a relatively short process. It was preparing for data
capture (i.e., dctertnining the appropriate clatabasc schema representation) and conducting
the analyses (i.e., expressing them as clatabasc queries) that took the bulk of the time and
effort.

It is likely that the use of an existing CASE tool would provide for most of the checks
that we performed, notably as checks of data flow diagrams. However, one of the goals of
this study was to work with whatever form of information was currently available. The
developers had not cmployecl a CASEi tool to design this portion of the software. Our
approach makes it possible to perform the equivalent analyses at little cost, CImi provides
for additional (and useful) flexibility to build customized analysis checks. in particular, if
we were to try to perform our checks with a CAS13 tool, we would have had to convert
the available information in order to input it into the tool. Additionally, wc would likely
not have had sufficient flexibility to clcfine additional checks (notably of the implicit
cause-effect links) not already provided for by that CAS13 tool, or to modify checks to
account for missing “obvious” information. The freedom of users to invent and employ
their own notational variants is obviously desirable. Our study suggests it may be possible

Feather Rapid Application of Lightweight Formal Methods . . . 12

to allow this freedom, and be able to rapiclly construct analysis mechanisms that work
directly with the users’ new notations.

It could be argued that the redundancy present in the design information was unfortunate,
and that a better solution would bc (o encourage the usc of a specification style that
eschewed such redundancy.]n particular, the implicit causality links could be
automatically deduced from the other cause-and-effect information, and so should never
need to be drawn by hand. Again, we appeal to the goal to work with available
information, and stress the need to analyze what wc actually found. Additionally, it is
plausible that the implicit causality links represented requirements, and that the rest of the
specification was intended to fulfil them. In this is indeed the case, then the analysis is
useful as a means to check consistency of the requirements with the system description.

4. Pilot Study 11- Analyzing Test logs

In the second pilot study, wc sought to repeat the use of the database tool as a mechanism
for lightweight, rapid analysis, but applied to a different aspect of the development
process. Our second area of focus was on the testing activities of the process.

As part of testing, the software nmclLIlcs are executed in a simulation test-bed (simulating
both the hardware, and the hardware’s environment, e.g., the spacecraft’s camera’s view
of stars). Each test run results yields transcripts of the software’s behavior. In particular,
the message passing between the software modules is recorded in log files. The test team
studies these logs to check that the software is correctly commanding the spacecraft.
However, these logs are highly detailed, and often quite lengthy (several thousand
messages were typical for a test run even during the first iteration of the project’s
development cycle). Hence it was thought appropriate to perform a pilot study in which
rapid lightweight analysis would be applied to a small subset of these test logs.

Again, the four requirements for rapid analysis were considered, and Iecl to the following
decisions:

(1) To rapidly acquit-c the i~formotion to he aHaIyz.cd: The available test logs provided
the raw data for analysis, already in a highly structured and therefore readily machine
manipulable form.

(2) To rapidly decide what to mIalyz,e this i~tf{)rtmitiol~ for: There are two sources of
properties that should be true of spacecraft control, and therefore are immediate
candidates for log file analysis: requirements on the correct behavior of the spacecraft
itself (e.g., that the camera shall never be pointed too close to the sun), and expected
protocols of message flow between the software modules. The latter are important
because deviations from expectations might point to abnormalities in the control
software itself.

(3) To rc~pidly perform the a)laly.vis itselj Again, a database was to serve as the analysis
engine. The expectation was that it would bc straightforward to populate the database
with the messages in a log file, and express the requirements to be checked as queries.
The query mechanism of the database itself would perform the analyses rapidly and
automatically.

Feather Rapid Application of Lightweight Formal Methods... 13

(4) To rapidly i)zterpret the results ofthc mthoci: Any discrepancies revealed by this
analysis would be reaclily traceable to the problematic message(s) in the log files.
Hence, this step was expected to need little further effort.

4.1 Available Information

A test run of the spacecraft software yields (among other things) a log file recording all
the message passing between the software modules. Figure 4 shows a fragment from such
a recording. Each log file line corresponds to a message being sent between modules of
the software implementation. For readability here, log file lines longer than the width of
this text have been split into multiple lines with their continuations indented.

Each log file line begins with the message name, followed by the arguments to that
message. Typically, these arguments take the form of a { } delimited list of{ } delimited
attribute-value pairs. For example, the first line comprises the message name
FSC_POWER_ON_OFF_ REQUEST, and a list of two attribute-value pairs, the first of
attribute switch_name and value ACS_EGA_A_SWl, and the second of attribute switch_state
and value FSC_SWITCH_ON. For a few message types, a single argument value simply
appears after the message name without {] delimiters. For example, the
ACS. MDC_STATE_COMMAND message towards the end of the fragment has argument
ACS_.RCSDV_MODE.

FSC_POWER_ON_OFF_ REQUEST {{switch_name ACS_EGA_A_SWl } {switch_state
FSC_SWITCH_ON}}

Ml_MODE_UPDATES {{updates “(MODE-UPDATES (POWER-STATE EGA_A ON)
((POWER-STATE EGA_A ON)))”}}

FSC_lPS_SET_THRUST_.LEVEL {{level 10}}
Ml_MODE_UPDATES {{updates “(MODE-UPDATES (OP-STATE lPS_A (STEADY-STATE

10)) ((OP-STATE lPS_A STARTUP)))”}}
Ml_ MODE_UPDATES {{updates “(MODE-UPDATES NIL ((OP-STATE lPS_A (STEADY-

STATE 10))))”}}
ACS_MDC_STATE_COMMAND ACS_RCSDV_MODE
Ml_MODE_UPDATES {{updates “(MODE-UPDATES (CONTROL-MODE ACS

ACS_TVC_MODE) ((CONTROL-MODE ACS ACS_TVC_MODE)))”}}

Figure 4- Fragment of a Log File

4.2 Analysis Objectives

The log files capture message passing bctwccn the software modules during test runs.
Two kinds of properties can be analyzed for in these log files:

. Whether the cent rol led spacecraft adheres to all its explicit requirements. For
example, that the boresight of the mmcra shall never poitlt to withi)z 1 degree of the
.$1411 When the camera cover is opeIz. ‘I%cse requirements are called “flight rules”, of

Feather Rapid Application of I.ightweight Formal Methods . . . 14

which there are expected to bc on the order of 100 as successive design iterations
introduce the 1X3- 1 spacecraft’s complete functionality.

. Whether the control software itself is operating normally. Specifically, whether the
message flow between the software modules follows the expected protocols. For
example, that a conmancl message is followed some time later by the corresponding
confirmation message, before the next such command message is sent. Deviations
from these expected protocols might indicate abnormalities in the control software
itself.

4.3 Analysis Process

The same database as had been used for the first phase of this pilot study was used again
as the analysis tool. Analyses were achieved by:
(1) preparing a database representation to hold the information content of the message log
files,
(2) loading the message log file information into the database,
(3) issuing the appropriate database queries corresponding to the properties to be checked
of the log file, and
(4) interpreting the results.

4.3.1 Representation

The first analysis step was the design of a database representation to hold the information
content of the log files. We made the initial decision to load all the messages into the
database at once, and then conduct the analyses as queries against this database.

Messages were represented as objects in the database, with their names and attributc-
value pairs represented as attributes of those message objects. The sequence of messages
in the log file was captured by asserting the binary relation msg-then-msg between the
objects representing successive messages. The transitive closure of this relation was
defined as then, allowing the querying of whether two messages appear in a given order in
the log file (but are not necessarily immediate successors).

4.3.2 I)ata entry

The well-structured form of the log files made the task of parsing them into the database a
straightforward programming task.

Some of the log files were quite large -3000 or more messages were common, in even in
the early stages of development. This rcndcrcd our na”ive approach, loading all of a log
file’s messages into the database, rather slow. However, since each query typically
involved only a small subset of the message types, it proved to be much more efficient to
load into the database only messages that were instances of those message types. This was
easily automated, by looking for the message names mentioned in the query, and then
loading those and only those named messages. This simple refinement considerably
speeded the loading and analysis activities. Discarding information that is obviously
irrelevant to the analysis objective is a commonly appliccl step to improve the tractability
of analysis.

Fea(hes Rapid Application of Lightweight Formal Methods . . . 15

4.3.3 Analysis

Analysis was to check adherence to flight rules (explicit rcquirenmnts expressed in ternls
of the spacecraft’s condition) and conformance to normal operation of the control
soft ware itself (protocols of nlcssage flow anlong ‘t he software Inodules).

Analysis was achieved by expressing a flight rule or nlcssagc protocol as a clatabase query
(or queries) which would retrieve all instances of messages in violation of that condition.
For cxanlple, one of the flight rules says: “When the IPS is t~ot thrmtitig, be ill RCS
con[rd mode”. This could be violated either by turning off thrusting while not in RCS
control mode, or turning off RCS control nlode while not thrusting. The following pair of
database queries check for these violations:

● Find an lPS_thrust_off nlcssagc that occurs while RCS control nlodc is off (i.e.,
occurs after some earlier RCS_control._mode_off nlcssage, but lwfore any subsequent
RCS_control_mode_.on nlcssage), and

. Find an RCS_control_mode_off nlcssage that occurs while lPS is not thtusting (i.e.,
occurs [Ifter some earlier lPS_jhrust_off nlcssagc, but before any subsequent
lPS_thrust_on nlessagc).

It is straightforward to express queries such as these in the AP5 database query language.
For cxanlple, the query corresponding to the first kind of violation is shown in Figure 5.

ldcally, the user should bc able to express the single flight rule, and have this pair of
queries be autonlatically generated. While wc anticipate this would be simple to
implenlcnt, we did not do so as part of the pilot study.

I (listof (ml m2) s.t.
(and (RCS_control_mode_off ml) ; ml is an RCS_control_mode_off message

(lPS_thrust_off m2) ; m2 is an lPS_thrust_off message
(then ml m2) ; m2 occurs after m 1
(not (exists (m3) ; there’s no m3 that’s an:

(and (RCS_control_mode_on m3); RCS_control_mode_on message,
(then ml m3) ; occurs after m 1, and
(then m3 m2))))))) ; occurs before m2

Q[iery tc)fimi a mes.wgc that turt~s ojjflPS thrusting ndtile RCS is ojff(i.e., afler m RCS
offme.mge, but before mly .vdncq[{ent RCS ml message).

Figure 5: database query for flight rule violations

Analysis for confornlance to nmsagc passing protocols is sinlilar in nature. For exanlple,
wc nlay expect con fornlancc to the protocol that a conlnland nlessage is followed sonle
tinlc later by the corresponding con firnlat ion message, before the next such conmand
ruessage is sent. The database query to check for violations of this rule need sinlply look
for two occurrences of the conln~and nlessage without any intervening confirmation
n~essage.

Feather Rapid Application of I.ightweight Formal Methods... 16

Since there were multiple log files (corresponding to distinct test runs), we found it
convenient to autonlate conducting the sanle analysis across a whole set of log files,
gathering together the results from each along with a sun~nlary pointing to which (if any)
of the log files yielded non-enlpty lists of answers to the queries. Again, a simple step to
take, but one that further enhancecl the automation of the overall process. We found that
the tinle to perform a typical query across a set of 60 or so log files, of which at least 20
were of substantial length, was on the order of two nlinutes, executing on a Pentiun@
166.

4.4 Analysis Results

Analyses were conducted for adherence to a small number of the expected nlessage
patterns and flight rules, on log files produced in two successive rounds of the project’s
iterative developnlent process.

One surprise was revealed by these analyses - while checking a log file for adherence to a
flight rule, several violations were detected, This led to (nlanual) inspection of the log
file. Guided by the violation (i.e., knowing what to look for), it was now easy to spot
repeated instances where commanding the spacecraft to change to an RC.S mode was
followed by a confirmation repor(ing the spacecraft had changed to a mode otkr than
RCS ! The explanation turned out to bc attributable to an anonlaly in the creation of the
message log files - the actual logging uses concise numerical codes in place the human
readable nlessage names. Post-processing of the log files is pcrfornmd later to replace the
codes with the corresponding names. in between the tinle of the sinlulation run (during
which the logging of nlcssages actually took place) and the post-processing of those log
files, the correspondence between nlessage names ancl codes was changed. Thus it turned
out to be a false alarn~ - the spacecraft software had, in Pact, been working correctly.

In fact, no genuine anomalies were discovered by this pilot study, most likely because for
the patterns and flight rules studied, the design was functioning correctly. Nevertheless,
the goals of the pilot study were nlct – namely, to den~onstratc the feasibility of rapid
analysis of volunlinous amounts of information. This has led to n~ore recent work
(ongoing) in which project money (as contrasted to the research funding that supported
the pilot study) is paying for the application of this sanle overall approach.

4.5 Analysis I)iscussion

Database as a formal analysis tool: Again, a database proved sufficient for representing
the infornlation content to bc analymd, and its query n~echanism capable of expressing
the analyses. The test logs enmrgc from test runs of the conlplex software systen~, which
involves a planner, and concurrently operating diagnostic engine and real-tinle executive.
Thorough analysis of these test logs is helpful towards developing assurance that the
system as a whole is operating correctly.

Scaling to larger analyses: These experinlcnts were conducted in the early iterations of
the spacecraft software clcvelopment. The simple optin~ization of loading the database
with only those nlessages relevant to the query, discarding the rest, was sufficient to
achieve desirable levels of efficiency for these early iterations. In successive design
iteration, further detail of the spacecraft is introduced, leading to nlorc nlessage types,

Feather Rapid Application of I,ight weight Formal Methods . . . 17

nlore flight rules, and longer nlessagc logs. This nlight necessitate further optinlization of
the checking process. The obvious next step (o optinlize the analysis technique would be
to process each nlessage log file incrementally, nlaintaining just enough of the state of the
spacecraft so as to be able to check the flight rule(s) of interest at the time. For exanlple,
to check the flight rule “ Wl[cII tllc IPS is ~tot t}~t-ustitlg, h itt UCS mwtrd mode”, read the
nlessages of a log file in one by one, nlaintaining the IPS state (thrusting or not thrusting)
and the control nlode (RCS or not RCS) incrementally, and watch for a database
transition that leacls to a state in violation of this rule. ‘I’his is an example of the
conversion of a tenlporal fornlula into a finite state autonlaton to recogni~e violations of
that fornlula. Such an approach is described in [Dillon & Yu 1994]. lf we were
incorporate this optimization into or approach, wc woLdd encode the autonmton as data in
the database, and n~akc use database integrity conditions to watch the correctness of each
transition with respect to the state of that autonlaton.

Convenience: The cxpericncc of expressing several flight rules and nlessage p:tssing
protocols revealed COIINIIOI~ly recurring idioms. An exanlple of such an idionl is: the
occl{rretlcc of m itlstmce of ttles.wige A f[dlowcd some time later by m i~ntmce of
message B without m it~tcrvclli!lg ittstmce ofmcssagc C. Rather than have to write
(exists (mA mB) (and (A_type_message mA)

(B_type_message mB)
(then mA mB)
(not (exists (mC) (and (C_type_message mC)

(then mA mC)
(then mC mB))))))

it was nluch nlore convenient to define a nlacro A_noC_B that would expancl to the above,
and thcrcafkr write simply
(A_noC_B A_type_message B_type_message C_type_message).
Indeed, what was needed was a combination of a vocabulary tailored for intervals [Allen
1983] (e.g., interval A should coiltai)l interval B), timing constraints [Lutz,& Wong 1992]
(e.g., X must occur within 10 seconcls after a Y has occurred), etc.

5. Conclusions

The two pilot studies showed two successful applications of lightweight fotmal nlethods
in a fast-paced dcvelopnlcnt setting, yielding results of a nlodest nature in a tinlely
fashion. These stuclics cnlployed lightweight forn~al n~ethocls as a con~plcnlent to, not
replacenlent for, other forms of quality assurance. Their relationship to other formal
nlethod approaches and to testing is discussed next.

Thorough testing of the software code itself remains essential, since it alone has the
capacity to exercise the actual code rather than an abstraction of that code. Testing would,
of course, reveal the interfttce nlisnlatches that the first pilot study addresses, however
would do so only after the designs had been developed into code. The first pilot study
showed how this class of problcnls coLIld bc detected at design tinle. The inclusion of a
form of sin~ple causality inforn~ation in the design docunmnts nlade possible further
checking, beyond sinlply issues of interface compatibility. The second pilot study showed

Feather Rapid Application of Lightweight Formal Methocls... 18

how the infornlation that results from testing can be autonlatically analyzed for a range of
conditions. This is obviously reliant upon testing to take place (without testing, there
would be no test logs to analyz,c!). It augments testing by pcrfornling a series of rnundanc
checks carried out thoroughly against all the available test logs. It could also be useful as
a nlcans to query the set of test cases, and thus be of help to the test team to allow them to
navigate through the set of tests, and to estimate the coverage provided by those tests.

More traditional “heavyweight” fornls of forn~al nlcthocls, for cxan~plc, synlbolic
evaluation of a fornlal specification, state exploration, and theorem proving, are
irreplaceable as means to expose the presence of particularly subtle errors (better yet, to
provide assurance as to the absence of those errors). llowcvcr, these rncthods typically do
not scale to the size and conlplcxity of the full problem. Therefore they arc usually
applied to a carefully chosen subset of the overall problcnl, or to a carefully constructed
abstraction of the problenl. In contrast, the lightweight approach followed here is applied
to the information content of existing project documentation, and little or no selection
fronl, or abstraction of, this information has been ncedccl.

Many approaches to analysis would be cajxfble of performing the sitnple analyses that wc
have conducted. However, our cnlphasis has been upon the goal of rapid analysis. This
precludes nlany of the heavyweight fornml nlethods, since their application requires
considerable tinle and effort to prepare the input for the analysis tool (e.g., to construct a
fornlal specification), and, often, to perform the actual analysis (e.g., attcnlpt to prove the
theorcn~, and interpret the failure to CIO so as an anonlaly in the specification). An
interesting observation (due to one of this paper’s reviewers) is that heavyweight formal
nlcthods typically require nlanual effort that is propor(io)lai to the entire iqmt to the
anal~~.~is process, including both the properties to be shown ami the specification upon
which that analysis is to be conductccl. For example, theorem proving usually requires
manual effort to construct the specification, express the properties to be proven, and then
to actually prove them. Model checking and other forms of state exploration require
construction of a state machine model to be checked; often, to obtain a state model that is
tractable to analyze, some significant amount of manually performed abstraction is
required. The lightweight approach as applied in the seconci pilot stLIciy rcquireci n~anual
effort that was proportional only to the expression of the properties -- the test logs to be
checked for adherence to these propcrlics were loacicd autonlatically into the database.
This nlade it suited to the checking of voluminous anlounts of information. The first piiot
study did require sonic nlanual effort proportional to the size of the specifications – it was
necessary to n~anually translate the infornuition content of ciiagrams’ arrows into database
infornlation. However, this was so straightforwar(i a task that could be done fairly
quickly, and without great insight.

Nevertheless, there are enlcrging results of application of “heavyweight” fornlal methods
in a rapid enough fashion to contribute to ongoing ~ievclopn~cnt activities. For cxan~ple,
[E3astcrbrook et al 1997] presents three case studies of formal nlcthods applied to the
requirements phase of system [ievclopnwnts.]n these cases there is typically an up-front
nlanual activity of rc-expressing the rcquircnlcnts into a form suitable for application of
the anaiysis tools. This nlanual activity yields benefits even before the analysis takes
place (e.g., revelations of nlinor anlbiguitics and inconlplc(cncsses), so itself qualifies as a

Ftxithcr Rapid Application of I,ighlwcight Formal Methods . . . 19

form of “lightweight” analysis rncthocl, with the acldcd benefit of being a key step towards
the eventual application of the “heavyweight” nlcthod. Further research is nceclcd find a
smooth progression from “lightweight” to “heavyweight” formal nlcthods, and so realize
the benefits of both approaches. Work along these lines includes the ongoing extension of
SCR-style consistency checking (e.g., llcitmcyer Jcffords & I.abaw 1996]) to incorporate
nvxlel checking as a nlore sophisticated form of analysis, and, in the reverse direction, the
incorporation of tabular forms of expression into the PVS theorem prover [Owry Rushby
& Shankar 1997].

The nlost expedient applications of formal nlcthods occur when the form of input needed
by the fornlal analysis tool coincides with the form of expression used by the project to
state their requirenmnts, designs, etc. CASE tools woLlld seem to offer an expeciient
vehicle through which to both capture the input needed for fornlal analysis, and proviclc
(autonlatic) fornlal analysis as just another option to the user. The relatively simple kinds
of analyses reported herein n]ight be well-suited to CASE tool usage. More sophisticated
analyses, however, n~ight necessitate son]e tailoring of the input]anguagc. For exatnple,
[Leveson et al 1994] clevisecl a formal language which was suitable for hutnan writing
and reviewing of rcquirenlcnts ad for mechanical analysis. Such circumstances are all
too rare, and it is likely that for a long tinlc to come there will renlain a need to adapt
fornlal nlethod techniques to whatever fornls of clocumcntation are enlployed by projects.
Lightweight formal nlcthods seem particularly suited to this activity.

Another possible application of lightweight formal nlcthocls is as part of the infrastructure
that would support “viewpoints” (also called “multiple perspective”) during software
devclopnmt [Finkelstein et al 1992] [Vidal et al 1996]. in this envisaged approach, a
development cnvironnlent should actively support nlultiple participants in the course of
their requirenlents, ciesign, etc., activities. Consistency checking between the nlultiple
participants’ artifacts (e.g., requirements, specifications, designs) would be a core service
of any such cnvironnlent.

6. Acknowledgements

Thanks are due to John Kelly, within whose formal nlethoc!s effort this work has been
conducted, and Robyn Lutz, for insights ancl support related to this activity. The assistance
of nlany Ncw Millcnium DS- 1 project n~cnlbcrs is gratefully acknowledged, especially
Bob Kanefsky from NASA/AMES ancl Tom Starbird from NASA/JPL, who have
answered nlany questions and providccl numy clarific:ttions. The generosity of the New
Mij]cnium teams to nlakc their interim project dcvelopnlent documentation available to
LN for study has n]ade this project possible. l’hc referees conlnmnts were insightful and
helpful.

7. References

[Allen 1983] J.F. Allen. Maintaining Know]cdgc about Tcnlpora! lntcrvals.
CIJt~~tt~[~t~ic:{ttiorl.v of the ACM, 26(11):832-843, 1983.

Feather Rapid Application of lightweight Fm-nud Methods... 20

[Cohen 1989] D. Cohen. Conlpiling Complex Database Transition Triggers. Proceedings
of the A CM SIGMOD Illtetwat iotml Cm fetwlce 011 the Mallagettlejlt of Ihta: 225-234,
Portland, Oregon, ACM Press, 1989.

[Dillon & Yu 1994] L. Dillon& Q. Yu. Oracles for Checking Tenlporal Properties of
Concurrent S ysten~s. Prmeeditlgs of the 2“d ACM SIGSOFT Symposium m Fowdatiom
cfSoftware lihgi~teering. Software Engineering Notes 19(5): 140-153, 1994.

[Easterbrook et al 1997] S. 13asterbrook, R. I.utz, R. Covington, J. Kelly, Y. Ampo & D.
Hanlilton. Experiences LJsing Fornlal Methods for Requitenlents Modeling. IEEE
Transactions on Software Engineering, 24(1), January 1998.

[Finkelstein et al 1992] A. Finkelstein, J. Kramer, B. Nuseibch, L. Finkelstein & M.
Goedicke. Viewpoints: A Framework for integrating Multiple Perspectives in Systenl
Developn~ent” ltltetwatiotlal .)ol{twal @Sojt w[lt-e Iingitleet-itlg ad Krlmledgc
L’ngi)zeering 2(1): 31-58, March 1992.

[Heitnmyer Jeffords & I.abaw 1996] C. Hcitnleyer, R. Jcffords & B. Labaw. Autonlated
consistency checking of require n~ents spccificat ions. ACM Traiz.mctiotzs m Software
Engi~zceri/zg ad Methodology 5(3): 231-261, July 1996.

[Jackson & Wing 1996] D. Jackson &J. Wing. lightweight Fornlal Methods. IEEE
Conlputer: 21-22, April 1996.

[Lcveson et al 1994] N.G. Lcveson, M. P.IZ. Heindahl, H. Hildrcth & J. D. Reese.
Requirenlents Specification for Process-Control Systen~s. lL’LZ’ Trmmctims cm Software
Engi}~eering 20(9): 684-707, Septen~bcr 1994.

[Lutz & Wong 1992] R. I.utz & J. Wong. Detecting [Jnsafe Error Recovery Schedules.
lEEE Tra~smtions m Sofhvarc E?lgii[ccritlg, 18(8):749-760, 1992.

[Lut?, 1993] R. Lutz. Analyzing Software Requirenwnts Errors in Safety-Critical,
En~bedded Systems. Proceedirlgs of the IEEE lt~tcrmtioml Syttqmrium cm Requirenle~lt.v
lh~i}teerit~g (RE ‘9.?): 126-133, San Diego, California, January 1993.

[Owry Rushby & Shankar 1997] S. Owry, J. Rushby & N. Shankar. Integration in PVS:
Tables, t ypcs, and Model Checking. To appear in Tools ad Algorithnl.~.for the
Comtrmticw ad Atzal~’sis qf System (7ACAS ‘97), Enschede, The Netherlands, 1997.

[Vidal et al 1996] L. Vidal, A. Finkelstein, G. Spanouclakis, A. Wolf (eds.) .loi)~t

Proceedings of the SIGSOFT ’96 Workshops, Part 11: Proceedil~gs of the Illtertlatimal
Workshop m Multiple Perspectives ill Softwwre Ilevelopmetlt, ACM 1996.

